Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method

نویسندگان

  • Christopher Bitter
  • Gordon F. Mulligan
  • Sandy Dall'erba
چکیده

Hedonic house price models typically impose a constant price structure on housing characteristics throughout an entire market area. However, there is increasing evidence that the marginal prices of many important attributes vary over space, especially within large markets. In this paper, we compare two approaches to examine spatial heterogeneity in housing attribute prices within the Tucson, Arizona housing market: the spatial expansion method and geographically weighted regression (GWR). Our results provide strong evidence that the marginal price of key housing characteristics varies over space. GWR outperforms the spatial expansion method in terms of explanatory power and predictive accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests

Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

Determining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm

Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...

متن کامل

Heterogeneity in Housing Attribute Prices: An Interaction Approach between Housing Attributes, Absolute Location and Household Characteristics

Coefficients of housing attributes in most hedonic specifications are held constant under the assumption that each attribute has one unique marginal price throughout the entire market area. However, there’s increasing evidence that the marginal prices of some key housing attributes do vary according to particular systematic patterns. In this paper, we employed expansion methods by incorporating...

متن کامل

Spatial and Social Media Data Analytics of Housing Prices in Shenzhen, China

Housing is among the most pressing issues in urban China and has received considerable scholarly attention. Researchers have primarily concentrated on identifying the factors that influence residential property prices and how such mechanisms function. However, few studies have examined the potential factors that influence housing prices from a big data perspective. In this article, we use a big...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Geographical Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2007